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Abstract—This work gives exact solutions for the buckling loads of variable cross-section columas,
loaded by variable axial force, for several boundury conditions. Both the cross-section bending
stiffness and the axial load can vary along the column as polynomial expressions. The proposed
solution is based on a new method that enables one to get the stiffness matrix for the member
including the effects of the axial loading. The buckling load is found as the load that makes the
determinant of the stiffness matrix equal zero. Several examples are given and compared to published
tesults to demonstrate the accuracy and flexibility of the method. New exact results are given for
several other cases.

INTRODUCTION

Columns with non-uniform cross-section are common in engineering. They are used in
order to save weight, or to satisfy architectural requirements. Exact buckling loads for some
special tases of non-uniform columns were derived in the past. The cases that were treated
in the past and solved in this work can be divided into three subsets as follows.

(1} Variable flexural stiffness with constant axial load

Gallagher and Lee (1970) gave an approximate finite clement solution for monomial
variation of the flexural stitfness. Bleich (1952) presented exact solutions for simple mono-
mial stiffness variations. Bert (1984) and Elishakofland Bert (1988) used improved versions
of the Rayleigh method 10 obtain approximate solutions of variable stiffness columns,
Iremonger (1980) solved the problem using the finite difference method. Lately, Smith
{1988) gave explicit formulae for the buckling load using the energy method, but these are
not satisfuctory for design purposes as they have lurge errors for high taper ratios.

(1) Constant flexural stiffuess with variuble axial load

Timoshenko and Gere (1961) and Dinnik (1932) presented exact solutions for mono-
mial toud variation and simple bounduary conditions {(cantilever or symmetrically loaded
simply supported beamn). Frisch-Fuy (1966) added the solutions for three more cases of
boundary conditions, but only for uniformly distributed axial force.

(i) Variuble flexural stiffness with variable axial load

Timoshenko and Gere (1961) and Dinnik (1932) presented exact solutions for mono-
mial variation of both axial and stiffness load for simple boundary conditions. Elishakofl
and Pellegrini (1987) presented exact and approximate solutions for two sets of boundary
conditions and monomial variation of stiffness and axial load.

When using the finite clement method for the case of vartable properties of the cross-
section along the column, it is common practice to divide it into many small elements, and
use some cquivalent moment of inertia and axial force for cach clement. The resulting
solutions arc approximate, and improvement can be achieved by using larger number of
clements. This involves much work in the preparation of data, and results in larger finite
element models for solution.

Recently, Eisenberger and Reich (1989b) presented an approximate finite element
solution that can be used for variable cross-section members. Later, Eisenberger and Reich
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(1989a) used this method for all the three subsets that were presented above. and got
excellent results for several known cases.

In this paper an exact method for the stability analysis of columns with variable flexural
rigidity and vartable axial load along their length is introduced. [t is bused on the derivation
of the stiffness matrix for variable cross-section members that was presented in Eisenberger
(1989). Here. the stiffness matrix i1s derived for general polynomial functions of member
properties including the effect of the variable axial load. The method is based on the well-
known power series solution to differential equations with variable coeflicients. However,
this is the first time, to the author’s knowledge. that this solution has been used to form the
stiffness matrix of a variable cross-section member, rather than solve for a particular set of
boundary conditions. This stiffness matrix is the exact stiffness matrix, and from that point
on the solution for the structure is as for the well-known procedure of the direct stiffness
method in matrix analysis of structures. The advantage of having a stiffness matrix is that
it can be combined with existing finite element codes directly. and that all the well established
procedures that were developed for the finite element method are valid here too. The use
of the stiffness method in the solution enables one to treat all combinations of boundary
conditions at the same case (as shown in all the combinations that were solved in the
examples). as well as assemblies of members to plane and space frames (with possible
application to large structures in space, where variable cross-section members are desirable
for weight reduction).

The results of the stability analysis using the proposcd method for several examples
are compared with results that were obtained using other approximate methods.

STIFENESS MATRIX CALCULATIONS

The differential equations that govern the bending displacements of a tapered member
should be solved in order to obtain the required stiffnesses. The differential equation reads

0 dwl oalf dw d? d*w d dw
SRRy, L - N(x) = LR, |- N(x) = P(x). (1)
dx- dx- dv dx dx- dx- dx dyx

where 7(x) is the moment of inertia along the beam, w is the lateral displacement, N(x) is
the axial force, P(x) is the distributed lateral load along the member, and R(x) = Ef(x).
The solution for the general case of polynomial variation of f{x), N(x), and P(x) along
the beam is not generally avaifable.

Using the finite clement technique, it is possible to derive the terms in the stiffness matrix.
We assume that the shape functions for the element are polynomials and we have to find
the appropriate cocflicients. It is widely known that exact terms will result, if one uses the
solution of the differential equation as the shape functions, for the derivation of the terms
in the stiffness matrix. In this work “exact™ shape functions are used, to derive the exact
stiffness coctlicients. These shape functions are “exact™ up to the accuracy of the computer,
or up to a presct value sct by the analyst.

We take the coeflicients in eqn (1) as the following polynomial variation along the
beam

R(x) =) Rx' (2)
!

N(x) =Y N (3

P(x)y =Y Px', (4)

r=0

where j. [ and m arc integers representing the number of terms in each series. This
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representation is very general. and many functions can be represented in this way, exactly
or up to any desired accuracy.
If we introduce a new local variable &

=7 (5)
we have for eqn (1)
d: dw d dw
. < - = Y | = = 6
e [f(s)dé_] e ["(s)di] &) (6)
with
i 7
ré)=3Y RLS =Y rl @)
i=0 =10
! ) ) !
=Y NLE =Y g 8)
i=0 i=0
pEy=3 P L =Y pé. 9)

i-0 {0

Now we choose the solution wi(¢) as the following infinite power serics

W@ = ¥ wi (10)

i)

Calculating all the derivatives and substituting the expressions back into eqn (6) we have

- Z Z +D—k+Dme, wp &= Z Z (i=k+D)(i—k+2nw; . :E

[ I ] (=0 k=0

+ Z z K+ DRh+F2U-k+ D =k+2)re 2w, 4428

10 k=0

+ Y Y 2kF D=k + DU =k+2)—k+3)r w8

120 k=0
ra k=) =0

To satisfy this equation for every valuc of &, we must have
e Z (K+Di—k+Dnme w00 — Z (i—k+Di—k+2mw, 4.,
ko« ) kom0
+ 2 kA DK+ =k+ D=k +2)r 2w
k=0

+ Y 2+ D=k + D=k + 2=k +3)rer Wiy
k=0

+ Y (—k+D—k+2)(i—k+3)(i=k+drov oo =P (12)

k=0
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or

|
T+ D+ )+ )+,

“'l« Fl

!:P:‘*” Z k+D(i=k+Dnmewii
k=9

+ Y =k D=k +mov, = Tk DR+ DG~k + D=k +2)re vy s

k=0 k=10

= Y U+ DUk +DU=k+ 20—k +3)r o weis

k=1

- X‘: (i—k+ l)(i—/\'+2)(i~k+3)(i-—k+4)r,‘w,<_k”], (13)
k=t

The terms for w,, , tend to 0 as i —» oc. Now we have all the w; coefficients except for
the first four. that should be found using the boundary conditions. For this case we choose
as degrees of freedom in the formulation the lateral deflection and rotation at the two ends
of the beam element. At { = 0 we have

wg = w(0) (14)
and
w, = w'(0) (15)

so the first two terms are readily known from the boundary conditions.
The terms w, and w, are found as follows: All the ws are lincarly dependent on the
first four, and we can write

w(l) = Z w, = Conwyg+Conw +Cowy+Cowy + Z C.p (16)

$ ot it}

wi(l) = Z iw; = Cywog+Cin +Chawy +Chwy + Z C.ipi. (17)
ER!

i=0

The 10 C coeflicients (Cy, €y, Cy, Gy, €4 C), Ch €4, G, and C) are expressible in terms
of all the coeflicients in r($), n(&) and p(&). C, for example, is the value of w(1) when wy = 1
and w, = w, = w, = p, = 0 calculated from eqn (10) using the recurrence formula in eqn
(13). In general we can write all the C cocflicients as follows :

Co=w(l) = z w, =1+ Z Wy (18)
k=1 kw3

Ci=w(l)= 5 kwo=i+ 3 kw, (19)
kel kow g

both with w, [fromegn (13)] busedonw, =, w,=p. =0:i,k=0.1,2,...,«. and

YCi=wl)=3Y w, (20)
im0 k=4

Y C, =w(l)= Y kwy 2
im0 k=4

both with wy [from eqn (13)] based on w, = 0;i =0, |, 2, 3, and using the values p, for the
particular loading. Then, knowing all the terms in eqns (18)—(21). the values of w, and w,
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[eqns (14)-(15)]. and the boundary conditions at x = L({ = 1) we can solve eqns (16) and
(17) and find the unknowns w, and w;. Thus, for any given variable polynomial functions
[eqns (7)-(9)] we can find all the coefficients w;, in eqn (13).

The terms in the stiffness matrix can be found as in the finite element method using
the following expression

1
S= J; FTQEIF (DS (22)

where F”(&) are the second derivatives of the basis functions. The four basis functions F
(also called shape functions) are found using eqns (10), (14)-(15) and (16)-(17) for an
unloaded member [i.e. p(x) = 0] with the following boundary conditions:

M w(0) = 15 w(0) = w(l) = w(1) = 0;
) w(0) = 13 w(0) = w(l) = w'(1) =0
3) w(l) = 12 w(0) = w(0) = w'(1) = 0
@ w(1) = 1; w(0) = w(0) = w(l) = 0

The shape functions that are found using this technique have the special property that
they are the “exact™ solution for the differential equation. The word exact in the previous
sentence stands for “as exact as we can get on a digital computer™. This is so since the
calculation of the C coeflicients is stopped according to a preset criteria; it could be until
the contribution of the next element is less than an arbitrary small ¢ (in most of the cases «
was chosen as 10 ') or until the € values converge completely (for the accuracy of the
computer). In this work, the terms in the stifTness matrix are found in a simpler and faster
way using the propertics of the shape functions [rather than by eqn (22)], as follows: the
terms in the stiffness matrix are defined as the holding actions at both cends of the beam,
due to unit translation or rotation, at each of the four degrees of freedom, one at a time.
Thus, corresponding to the four scts of boundary conditions above there are four solutions
W i=1,2,3, 4 tor w(¢) which are found using eqns (10), (13) and (16)-(21).

Then, the holding actions will be:

r0)d*W, 1 dr(0) d*W, n(0) dW,

o=@ to e et o« 23)
0 0 0
=6 w2 D wa s Dw,
_H0) &W, )
MO = -5+ qar = 277 W (24)
vy = T EW L) &, () 4w,
W=-T & ru & Ta
= -3 L k= 0G=2 w25 S k- =" S ww
2 kel
(25)
hdw, (I
M(l)—%l—d-gg—-r-(lle(k—l)W,*, 26)

where V is the shear force and M is the moment.
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. r(0) r m(0)
D) =6 W 42— Wt —— W 2
S(i.d) 6[‘3 a2 I W+ 7 b {(27)
. r(0)
Liy= =2 —F W, 2
S(2.1) <73 (28)
l b4
S3.0) = _CL’ Y k(k—1)(k=2)W, ~ QL( ) Y ktk—1W ,— n(l) Z kW, (29)
k=1 k=2
LT U : .
S@.i) = Z k(k— )W, (30)

where W, are calculated using the r, coefficients.

Then the buckling load for variable cross-section members, or frames with such
members, can be found as the axial loads N(x) in the members, that cause the determinant
of the corresponding stiffness matrix to become zero. This is done using a routine that
converges on the values of the axial load that satisfy this criteria. The procedure was
incorporated into a regular beam analysis program and demonstrated in the following
examples.

At this pont, before going into examples, an overall discussion and comparison of the
proposcd method with the finite clement method is presented : one can ook at the procedure
suggested in this work as an addition to the finite element method, as one developing a
methodology to derive shape functions that yicld the exact stiffness matrix. When using the
finite element method, one can converge to the solution. However, it will take several
solutions with increasing number of elements in order to apply an error estimate that will
yicld a very good, but still approximate solution. Using the proposed method this is not
nceded and the exact solution is found from the first analysis. From the computational
point of view, it is obvious that it is more time consuming to derive the exact stiffness matrix
as outlined in this work. But, when this is viewed in comparison to assembling the stiffness
matrix for 20 or 50 elements, and the fuct that the size of the cigenvalue problem that results
in the stability analysis, is much smaller, more than offsets the longer derivation time. As
an example, for a fixed-free column with variabie cross-section, and vartable axial load
(such as own weight), a 20 clement finite element model, that results in very good estimate
of the buckling load (as shown in an example in the next section), leads to a 40 by 40
eigenvalue problem, compared with a 2 by 2 matrix for the proposed method.

In the examples that follow, the power of the new method is demonstrated in the
solution of many cases where exact solutions were not available, Also, some comparisons
that were made to the wrong values [(Bert, 1984) compared to the result in (Swenson,
1952)] are pointed out.

EXAMPLES

The method was first checked for the classic Euler buckling cases for columns. For all
the cases, the method yielded the exact theoretical solutions, using only one element for the
whole member. The examples in this section are divided according to the three cases that
were presented in the introduction.

(i) Vuriuble flexural stiffness with constant axial load
Consider the column that was solved by Swenson (1952) and later by Bert (1984) and
Elishakoff and Bert (1988). The member moment of inertia is given as

1(Q) = Ly(1+2). 3H

The column is loaded by an end load P. This column was solved previously for the case of
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Table 1. Values of & in eqn (32) for members with variuble
flexural stiffness and constant axial loads

Boundary conditions Buckling load

Exampie 1 Example 2
Strongend Weak end Swenson (1952)  Bleich (1952)

Free Fixed 3117696228 3.83637691%
Fixed Free 4124184446 6.731865407
Hinged Hinged 14511249540 20.792288456
Hinged Fixed 29.438962806  42.109176122
Fixed Hinged 29.478844262  42.109176122
Fixed Fixed 57.393936136  81.923363881

simple supports at both ends (and the reported result was incorrect). The values for the
nondimensional buckling load ¥
L (32)
El,

are given in Table 1. Also results are given for five more combinations of boundary
conditions. In all the examples only one element was used to find the critical load, except
for the fixed-fixed case where two elements were used (but only two degrees of freedom).
It should also be noted that all the results that are presented in this paper were checked
against the converged values that were obtained using the approximate method in Eisen-
berger and Reich (1989a).

Another example is the column that was solved by Bleich (1952) and later by Bert
(1984) and Elishakoft and Bert (1988). For this example, the moment of inertia along the
column varied as

I(‘f) = [()(l‘*'é):- (:‘3)

The values of the normalized buckling loud are given in Table | for the six combinations
of boundary conditions. Bleich solved exactly for the hinged -hinged case and obtained the
same value. It should be noted here that for this special member the buckling loads for the
fixed -hinged and hinged -fixed case are exactly the same. This is only due to the particular
variation in cross-section properties, and for small deviation from it, this no longer holds.

(i) Constant flexural stiffness with variable axial load

The third example is of a column with constant flexural stiffness and distributed
load along the member that was solved by Dinnik (1932) and is given by Timoshenko and
Gere (1961) on p. 131. The variation of the distributed load along the column is given by :

-

g(x) = ¢y¢” (34)

where the subscript b indicates the values at the base of the column. Then, the critical loads
are given as

P i oy mEf (35)
o =7 g = —5-. 3
T L R dn S L'
Table 2. Values of m in eqn (35) for members with constant flexural stiffness and variable axial loads
Boundary conditions Buckling loads
Upperend  Lower end p=0 p=1 p=2 p=3 p=4 p=3
Free Fixed 7.837347 16.100953  27.256905  41.304808  58.244502  78.07%911
Hinged Hinged 18.568725 23.238937  26.674598  29.745281  32.703955  35.630368
Fixed Hinged 30.009421 36.762826  41.916950  46.347724 50460719 54.434713
Hinged Fixed 52.500663 78.982899 104.048055 130.353568 158.895394 190.048433

Fixed Fixed 74.628569  107.823212 139541434 {71.544095 205.037024 240.672113
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Table 3. Values of ¥ in egn 32) for members with vanable flexural stiffness and variable axial loads

Buckling load

Boundary conditions Approximate—FE
Strongend Weakend 2elements Selements 10 elements 20 elements 50 elements Exact
Fixed Free 11905213  13.557930  13.803883  13.865669  13.884204  13.886289
Hinged Hinged 29581692 29.257630 29211988 29.200322  29.197909  29.196698
Hinged Fixed S8A27582 47.227473 46441741 46.257822 46.208650  46.197566
Fixed Hinged 63.926002 82.337170 83945711 84348360 84.466380 84483161
Fixed Fixed 119.051369  117.775740  117.610867 [17.617918 [17.630016 [17.626024

Timoshenko and Gere (1961) presented the solution for the free-fixed case. In Table 2 the
exact values of m that were calculated using the proposed method are shown, and they
agree with the values in Timoshenko and Gere (1961). Table 2 contains also values for the
free-fixed case that were not given by Timoshenko and Gere (1961) for n = 4,5, and these
values agree with the converged approximate values that were reported by Eisenberger and
Reich (1989a). Four more cases of boundary conditions combinations are given in Table
2. Frisch-Fay (1966) added the solutions for three more cases of boundary conditions, but
only for uniformly distributed axial force. The values that he gave were: 18.53 for the
hinged hinged casce: 52.49 for the hinged -fixed case: and 74.65 for the fixed--fixed case. It
can be scen that these are still approximations, probably duc to the accuracy of the
calculation that he performed. as hus method is exact. All other cases appear here, appar-
ently, for the first time.

It should be noted that the results for the higher values of pin Table 2 indicate that the
type of the restraint in the lower end of the column is more significant in the final result for
the buckling load. This is so, as the lToad is concentrated more in the lower part of the
column as p is increased, and the upper hall of the columa is hardly loaded, so that it's
elfect is just in restraining the shape at the top.

(iit) Variable flexural stiffness with cariable axial load

The only results that are available for this case are those given by Timoshenko and
Gere (1961). However, in all these cases, the moment of inertia at the top of the column
was taken as zero, which is not realistic. Such cases with zero stiffness, cannot be solved
using the method presented in this work. Therclore, for this case, the results will be
compared to those from the finite clement method. When using the finite element method,
the member flexural rigidity and the axial are taken as constant all along the element, as
the value at the mid length point of the element. As an example, the column in the first
example that was solved by Swenson (1952), but with uniformly distributed load along the
member, will be used here. The load is taken in such a way that the maximum axial load
is at the stronger end. In Table 3 the results are given for five combinations of boundary
conditions, and compared with the results from the approximate solution using 2, 5, 10, 20
and 30 elements along the member. It is seen that the approximate results converge to the
exact results for all the cases. There are two problems with the well-known finite element
solution in these cases: the first is that the relative errors are not known and several runs
are needed to find if the solution is within some error criteria. The second is that the
convergence is for some cases conservative (i.c. the exact buckling load is below the finite
element solution) and in other cases it is nonconscrvative estimate. Overall, the computer
time for the more exact finite clement solutions (20 and 50 elements) was longer than the
time for the exact solution as presented in this work. There is also the guarantee that only
one solution s needed and that it will yield the exact solution, when using the proposed
method.

(iv) Swayv buckling of u frame
Another example is that of the sway buckling of the frame in Fig. I. The framc is
composed of four tapered members with lincarly varying moment of inertia, with end values
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Fig. 1. Example frame with variable cross section members.

as shown. Utilizing symmetry of the problem. only two members were used for the solution
in the exact method and the normalized buckling load is 6.017535.

DISCUSSION AND SUMMARY

The method that was presented in this work is based on the solution of the differential
equation for any polynomial variation of the cross-section properties. Then, the results for
the buckling loads are exact. The application of different sets of boundary conditions is
straightforward as in the standard stiffoess method of analysis. The first advantage of the
method s that it gives exact values for the buckling load (rather than approximate in other
methods). Comparing this method to the finite element method or the finite difference
method points out the second advantage of the method @ only one clement is needed for the
solution. Thus, the results are computed much faster. The method was used also to find the
natural frequencies of vibrations of variable cross-section members (Eisenberger, 1989).

In this work, exact buckling loads (up to the accuracy of the computer) for variable
cross-scction members with variable axial loads are given. These were derived using a new
clement based method that enables one to find the stiffness matrix for members with any
polynomial variation of the cross-section and axial foading. In the cxamplces, for the three
classes that were listed in the introduction, it is shown that the method gives exact results
compared to known buckling loads. Muny new exact values for buckling loads are given
for various combinations of boundary conditions at the ends of the member. This procedure
can be incorporated into regular frame programs to yield exact buckling loads for more
complex structures,
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